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Approximate solutions are presented for the transfer of heat in two 
regions, i.e. , a region in which the inertial and viscous forces are 
of identical order of magnitude, and the region of creep flow. 'The 
experiments carried out with air over a wide range of Ra x numbers 
yield remits in good agreement with the solutions. 

The ini t ial  expe r imen t s - -by  Wise [1]--into the d i s -  
t r ibut ion of local  h e a t - t r a n s f e r  coeff ic ients  under 
conditions of na tura l  convect ion f rom a downturned 
hor izonta l  h e a t - t r a n s f e r  su r face  d i sc losed  two cha r -  
ac t e r i s t i c  reg ions  of change in the h e a t - t r a n s f e r  co-  
eff icient .  Near  the edges of the plate it was found that 
the h e a t - t r a n s f e r  coeff ic ient  i n c r e a s e d  sharply ,  ac-  
cording to the law Nu x ,,0 Grlx/s. At the cen te r  of the 
plate the h e a t - t r a n s f e r  coeff ic ient  r ema ins  v i r tua l ly  
constant  independent of the longitudinal coordinate  x, 
i . e .  Nu x ~ N~'I/3 

The interferometric patterns of the temperature 
fields (Fig. 1) which we obtained for the boundary 
layer serve also to confirm this type of change in the 
heat-transfer coefficients. For a small plate 5 cm in 
width (the top picture in Fig. 1), the thickness of the 
boundary layer increases continuously from the edges 
to the center of the plate, while the heat-transfer co- 
efficient diminishes according to the law Nu x ~ Grlx/5. 
For a large plate 20 cm in width (the bottom picture 
in Fig. I) we now find two characteristic zones of 
variation in the thickness of the boundary layer and 
in the heat-transfer coefficient: virtual constancy at 
the center of the plate, and reduction toward the edges 
of the plate. 

Proceeding from this physical representation, we 
can divide the boundary layer of a horizontal plate-- 
whose heated surface is facing downward--into two 
flow regions. The region around the plate edges is 
characterized by an approximately identical order of 
inertial and viscous forces; the region in the center of 
the plate is characterized by creep flow in which vis- 
cosity forces predominate. 

F o r  the f i r s t  region,  where  we find a pronounced 
change in the h e a t - t r a n s f e r  coeff ic ient  f rom the lon-  
gitudinal coordinate ,  the hydrodynamics  and heat  
t r a n s f e r  can be desc r ibed  by the following sys tem of 
boundary - l aye r  equations [2]: 
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(see Fig.  1 for  the locat ion of the coordinate) .  In view 
of the s y m m e t r y  of flow, the coordinate  x va r i e s  in 
l imi t s  f rom 0 to l / 2 .  

The integral  re la t ionship  for  sys tem (1)-(4) have 
the fo rm 
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The approximate  solution to the p rob lem was sought 
by r e s o r t i n g  to the Karman-Poh lhausen  method for  

I 2 3 /~ 5 cm 
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Fig.  I .  I n t e r f e r ence  t e m p e r a t u r e - f i e l d  p ic tu res  near  hor izonta l  su r f aces ,  
with the i r  heated s ides  downward, with natura l  convect ion in an infinite 

a i r  volume.  
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the following boundary condit ions:  
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The d is t r ibu t ion  of t empera tu re s  and veloci t ies  
within the boundary layer  is wr i t t en  in polynomial  
form: 

0 = 0  w (1 3 y __ 1 .q@) 
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which sat isfy boundary  condit ions (8) and (9). Here u 1 
is an unknown expressed  in units  of velocity.  

Equations (5)-(7) are in tegrated in the assumpt ion  
that the th icknesses  of the hydrodynamic and t he r ma l  
boundary l ayers  are equal. This assumpt ion  is not 
too gross  for na tura l  convection. In any event,  the 
compar i son  (Fig. 2) whieh we ea r r i ed  out between 
the exact solutions obtained by Ostraeh [3], Sparrow, 
and Gregg [4] for a l amina r  boundary layer  in na tura l  
convection on ver t i ca l  sur faees  for  P r  = 10 -3 -103 and 
the approximate solut ion obtained in [5] in the a s sump-  
t ion that the boundary l ayers  were  equal resu l ted  in a 
max imum divergenee  of b o u n d a r y - l a y e r  discharge 
cha rac t e r i s t i c s  (a x and TW) that did not exceed :L3%. 

Substi tution of prof i les  (10) and (11) into sys tem 
(5)-(7),  with cons idera t ion  of boundary condit ions (8) 
and (9), yields 

6 
- 3.33 (Gr x Pr) -I/5 (2 § Pr-a) 1/5 , (12) 

X 

ul = 5.9 a (Gr~ Pr) 2:(2 4- Pr-1) -2/5 . (13) 
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The local heat flow at the wall is found f rom (10): 
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=0.45 L 0__~_~ (Gr~ Pr) 1/5 (2 + Pr-1) -I/5 (14) 
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and the local  Nussel t  number  

Nu x = 0.45 (Gr~ Pr) I/5 (2 + Pr-1) -1'5 . (l 5) 

For  a i r  (Pr  = 0.72) 

~ _ I / 5  Nu~ = 0.351 (Grx Pr) 1: = 0.329 t ~  . (16) 

The average Nussel t  number  for a plate completely 
within the f i r s t  flow region is 

Xt  
N--u = -~-  = 0.99 (Grt Pr) I/s (2-t- Pr-l) -~/5. (17) 

For  a i r  (p r  = 0.72) we have 

N~ = 0.776 (Gr t Pr) 1/5 , (18) 

which is sma l l e r  by 7.5 % than the exaet Stewartson 
solut ion [6], obtained for the average hea t - t r ans fe r  
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Fig. 2. Compar i son  of exact hea t - t r ans fe r  
solut ions with l a m i n a r  natural  convection 
on ver t ica l  sur faces  with approximate so lu-  
tion (A = Nux/(GrxPr)l /4) :  1) Squire ' s  ap-  
proximate  solution [5]; 2) Os t rach ' s  exact 
solution for  P r  = 0.01, 0.72, 1.0, 10, 100, 
and 1000; 3) exact solution of Sparrow and 
Gregg [4] for  liquid meta ls  with P r  = 0.03, 

0.02, 0.01, 0.008, and 0.003. 

coefficient when P r  = 0.72: 

Nu = 0.841 (Gr~ Pr) I/5 . (19) 

The Fishenden and Saunders exper iment  [7] on the 
average h e a t - t r a n s f e r  coefficient in air  yield the r e l a -  
t ionship 

N~ = 0.81 (Grr Pr) l/5, (20) 

which is only 4 % lower than our approximate solution. 
Thus,  for the f i r s t  flow region the approximate 

solut ion yields sa t i s fac tory  agreement  with the exact 
solution and exper iment .  

For  the second region,  i . e . ,  the region of creep 
flow, where the he a t - t r a n s f e r  coefficient is v i r tua l ly  
independent of the longitudinal  coordinate,  the equa- 
t ions for the ereeping "boundary layer"  in our co- 
ordinate  sys tem can be wr i t ten  in analogy with the 
equations for the forward point [8]: 
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(22) 

The concept of "boundary layer"  is re ta ined  here 
in the sense  that the effect of the heatedwal l  is extended 
to a layer  smal l  in compar i son  with the d imensions  of 
the plate (see Fig.  1), thus making it possible  to 
neglect  the der iva t ives  with respec t  to x in Eqs. (21) 
and {22). Here,  as in the f i r s t  region,  we will seek 
the approximate solution by r e so r t ing  to the K a r m a n -  
Pohlhausen method. 

We assume the following veloci ty d is t r ibut ion  in the 
"boundary layer"  (within the layer  in which the heated 
wall exer ts  an effect): 
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v = - -  vl �9 (23) 

It sa t is f ies  the wall boundary condition v = 0 when y = 0. 
At the outside edge of the boundary layer  we have y = 6, 

0.8 + -- 

l x - - 3  
0.6 \ E o , ~  

a~ 3 

o a2 as ae o.e v/~ 
Fig. 3. Dimens ion less  t empera tu re  profi le  
within the f i r s t  flow, region  (0-= 0 /0w) ,  y / 6  = 

= (y/4.25x)(GrxPr)l /5:  1) approximation of (10) 
with subst i tuion of 6 f rom solution (12); 1)Ra x = 
= 7 �9 103; 2) 8. 103; 3) 2.4 �9 104; 4) 2.8 �9 104; 5) 

Ra x = 2 .4 .10  ~ [1]. 

u = 0, du/dx = 0, and it follows f rom the continuity 
equation that v = - v  t = const ,  which is also sat isf ied 
by d is t r ibut ion  (23). 

The t empera tu re  d is t r ibut ion  in the "boundary layer"  
is expressed  in the form of the polynomial  

( 1 g 4 y~ ) 
0 = 0 ~ ,  1 5 ~ 5 53- , (24)  

which sa t i s f ies  the boundary conditions 
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Og ~ 
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Integrat ion of Eqs. (21) and (22) with respec t  to the 
thickness of the "boundary layer ,  " with cons idera t ion  
of (23) and (24), leads to 

5_ = 2.32 (Gr x Pr) -I/3. (26) 
x 

With cons idera t ion  of (26), f rom dis t r ibut ion  (24) 
we find the heat flow at the wall:  

qw = 0.0862 ~ 0~(Gr~ Pr) I/3 . (27) 
X 

The local hea t - t r an s f e r  coefficient for the second 
region (the creep-f low region) is then expressed  by 

Nu~ = 0.0862 (Gr~ Pr) I/3 . (28) 

Equating (15) and (28), we find the value of the 
complex ( G r x P r ) . ,  separa t ing  the two flow regions:  

(Gr~ Pr), = 2.43.105 (2 + Pr-1) -3/2 (29) 

or for air  (Pr  = 0.72) 

(Or~ Pr), = 3.88.10 a. (30) 

The average Nussel t  number  for a plate whose 
heated surface  is turned downward was de te rmined  
exper imenta l ly  in air  by Novozhilov [9], who der ived 

the following re la t ionship  for a 0.91 • 0.91 m in the 
region Gr /P r  >> 3.88 �9 10~: 

N~ = 0.085 (Gr l Pr) '/3, (31) 

which differs by only ] .5 % f rom the theore t ica l  solu-  
tion of (28). The McAdams [10] genera l iza t ion  of the 
exper iments  on the average heat t r ans f e r  for P r  > 0.7 
yields the following theoret ical  fo rmula  for plates  
whose heated sides are turned downward: 

N~ = 0.104 (Gr I Pr)!/3, (32) 

which exceeds the Nu value of solution (28) by 17%. 
Such agreement  between (28) and the genera l iza t ion  

of the McAdams exper iments  on the average heat t r a n s -  
fer  can be t rea ted  as completely sa t i s fac tory ,  s ince 
the exper imenta l  points ,  on the average,  yield a sca t te r  
about the approximating curve (32) of ~]0%. Moreover ,  
the inc rease  in the heat t r ans fe r  toward the edges of 
the plate is not accounted for by fo rmula  (28), which 
may resu l t  in a substant ia l  exaggerat ion of the co- 
efficient in (28) for compara t ive ly  smal l  plates (see 
formulas  (33)). 

The average Nussel t  number  for a plate of length 
l for which (GrxPr) > (GrxPr)* is given by 

Nu--~ = 7.13 (2+ Pr-I) -1/2 + 0.0862 (Gr l Pr)I/3 (33') 

or  for a i r  (Pr = 0.72) 

N--il ! = 3.88 + 0.0862 (Gr l Pr) 1'3. (33") 

In many cases  it is imposs ib le  for the compar i son  
of the theore t ica l  solut ions re la t ive  to the exper iments  
on the average heat t r a n s f e r  to se rve  as a re l iab le  
guarantee of validity for the physical  model on which 
the solutions are based.  It is therefore  of cons iderable  
in te res t  to compare  the der ived approximate solutions 
with the exper iments  on local  heat t r ans fe r .  

In the light of the inadequate exper imenta l  data on 
local coefficients ,  we set up an exper iment  whose 
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Fig.  4. Local heat t r a n s f e r  under  condit ions 
of na tura l  convection in the a i r  near  horizontal  
plates  with the i r  heated sur faces  downward. I) 
according to (16) for  the f i r s t  region and according 
to (28) for the second one; II) values  of (Ra x) ,  ac -  
cordingto  (30); 1 and 2) on the p la tewi th  l = 200 
and 50 ram; 3) 160 mm [1]; 4) 720 m m  [11]; 5) 
910 m m  [9]; 6) 100 and 200 mm []2] a - - reg ion  

on of 1/5 law; b - - r eg ion  of 1/3 law), 

purpose was to provide the max imum range of Ra x 
number s  and to es tabl ish  the values  of (Rax) , in the 
t r ans i t ion  zone separa t ing  the two cha rac te r i s t i c  heat-  
t r ans f e r  regions .  
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The exper iment  was ca r r i ed  out in a i r  on two b r a s s  
plates which were 50 and 200 mm wide, each exhib- 
i t ing a length of 490 m m  and a thickness  of 5 mm.  The 
constancy of the p l a t e - su r f ace  t empera tu re  was en-  
sured  by an ex t remely  tight winding of n ichrome wire  
and the sufficient  thickness  of the plate.  The t empe ra -  
ture  field in the boundary layer  and the p l a t e - su r f ace  
t empera tu re  were  measu red  by means  of an i n t e r -  
f e romete r .  To achieve the requ i red  accuracy  in mea -  
su r ing  the t empera tu re  f ields,  we posi t ioned the models 
lengthwise along the l ightbeam of the i n t e r f e rome te r .  
These specia l ly  adopted m e a s u r e s  to prevent  the effect 
of ex terna l  d i s tu rbances  at the boundary layer  of the 
plate proved to be unneces sa ry ,  and it developed during 
the course  of the exper iment ,  s ince the boundary layer  
for a plate whose heated side is turned down was ex- 
t r eme ly  r e s i s t an t  to external  d i s tu rbances .  The local 
h e a t - t r a n s f e r  coefficients were de te rmined  f rom the 
t empe ra tu r e  prof i les .  Since the physical  p a r a m e t e r s  
of the a i r  in the exper iments  of [1,9,  ]1,12] were  taken 
for a wall t empera tu re  t w, we also took t w as the 
decis ive  t empera tu re .  

The exper iments  were ca r r i ed  out at heated t e m p e r a -  
tu res  ranging f rom 10 to 70 ~ C, and the local Rayleigh 
numbers  var ied in the l imi t s  Ra x = 0.7-2.5 �9 ]0 ~. 

The exper imenta l  r esu l t s  are  shown in Figs .  3 and 
4. F igure  3 shows a compar i son  of the d imens ion less  
t empera tu re  prof i les  (obtained exper imenta l ly  in the 
f i r s t  flow region) with the prof i le  de te rmined  f rom 
(]0) on subst i tut ion into the la t te r  of the value of 5 
f rom (17) for P r  = 0.72. Here we also find the t e m p e r a -  
ture  profi le  der ived in the Weise exper iments  [1]. As 
we can see f rom Fig. 3, the exper imenta l  t empera tu re  
profi les  are  in sa t i s fac tory  agreement  with the approx- 
imate solution.  

The exper imenta l  data of the var ious  authors [1,9, 
] 1,12] on the local t r ans f e r  of heat in air  f rom a hor-  
izontal plate whose heating surface  is facing down- 
ward a re  shown in Fig.  4. The range of genera l iza t ion  
for the exper imenta l  data is Ra x = 0 .7-5  �9 10 ~. Here we 
also find the following approximate solut ions:  (16) for 
the f i r s t  region and (28) for the second h e a t - t r a n s f e r  
region.  The agreement  between the approximate solu-  
t ions and the exper iment  mus t  be regarded as sa t -  

isfactory.  The slight overs ta tement  of the exper imenta l  
values of ~x re la t ive  to the solut ion--as  given in [1] 
and [ l l ] - - c a n  be explained by the s t rong influence of 
radia t ive  heat exchange in these re fe rences .  

NOTATION 

x and y are the t r a n s v e r s e  and longitudinal  co- 
ordinates;  0 is the excess t empera tu re ;  t is the t e m -  
pera tu re ;  l is the plate width; 6 is the bounda ry - l aye r  
thickness;  P is the excess  p r e s su re ;  p is the densi ty;  
u 1 is the typical  velocity; qw is the specific heat flux 
on wall; u and v are the longitudinal  and t r a n s v e r s e  
veloci t ies;  Ra is the Rayleigh number .  Symbols: x 
is the local value; dash denotes the mean  value; w 
denotes the wall; oo denotes the undis turbed flow; l 
denotes the plate width; * denotes the t r ans i t ion  value. 
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