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Approximate solutions are presented for the transfer of heat in two

regions, i.e., aregion in which the inertial and viscous forces are
of identical order of magnitude, and the region of creep flow. The
experiments carried out with air over a wide range of Ra, numbers
yield results in good agreement with the solutions.

The initial experiments—by Wise [1]—into the dis-
tribution of local heat-transfer coefficients under
conditions of natural convection from a downturned
horizontal heat-transfer surface disclosed two char-
acteristic regions of change in the heat-transfer co-
efficient. Near the edges of the plate it was found that
the heat~transfer coefficient increased sharply, ac~
cording to the law Nuy ~ Gré/ 5. At the center of the
plate the heat-transfer coefficient remains virtually
constant independent of the longitudinal coordinate x,
i.e., Nuy ~GrY/3,

The interferometric patterns of the temperature
fields (Fig. 1) which we obtained for the boundary
layer serve also to confirm this type of change in the
heat-transfer coefficients. For a small plate 5 cm in
width (the top picture in Fig. 1), the thickness of the
boundary layer increases continuously from the edges
to the center of the plate, while the heat-transfer co-
efficient diminishes according to the law Nu, ~ Gr)I( 5,
For a large plate 20 ¢cm in width (the bottom picture
in Fig. 1) we now find two characteristic zones of
variation in the thickness of the boundary layer and
in the heat-transfer coefficient: virtual constancy at
the center of the plate, and reduction toward the edges
of the plate.

Proceeding from this physical representation, we
can divide the boundary layer of a horizontal plate—
whose heated surface is facing downward—into two
flow regions. The region around the plate edges is
characterized by an approximately identical order of
inertial and viscous forces; the region in the center of
the plate is characterized by creep flow in which vis-
cosity forces predominate.

For the first region, where we find a pronounced
change in the heat-transfer coefficient from the lon~
gitudinal coordinate, the hydrodynamics and heat
transfer can be described by the following system of
boundary-~layer equations [2]:
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(see Fig. 1 for the location of the coordinate). In view
of the symmetry of flow, the coordinate x varies in
limits from 0 to1/2.

The integral relationship for system (1)~(4) have
the form
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The approximate solution to the problem was sought
by resorting to the Karman-Pohlhausen method for
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Fig. 1. Interference temperature-field pictures near horizontal surfaces,
with their heated sides downward, with natural convection in an infinite
air volume,
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the following boundary conditions:
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The distribution of temperatures and velocities
within the boundary layer is wriften in polynomial
form:
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which satisfy boundary conditions (8) and (9). Here u,
is an unknown expressed in units of velocity.
Equations (5)—(7) are integrated in the assumption
that the thicknesses of the hydrodynamic and thermal
boundary layers are equal. This assumption is not
too gross for natural convection. In any event, the
comparison (Fig. 2) which we carried out between
the exact solutions obtained by Ostrach [3], Sparrow,
and Gregg [4] for a laminar boundary layer in natural
convection on vertical surfaces for Pr = 103 —~10° and
the approximate solution obtained in [5] in the assump-
tion that the boundary layers were equal resulted in a
maximum divergence of boundary-layer discharge
characteristics (@, and 7y,) that did not exceed +3%.
Substitution of profiles (10) and (11) into system
{5)—(7), with consideration of boundary conditions (8)
and (9), yields
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The local heat flow at the wall is found from (10):
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and the local Nusselt number
Nu, = 0.45 (Gr, Pr)'”® (2 4+ Pr—71% (15)
For air (Pr = 0.72)

Nu, = 0.351 (Gr, Pr)'”® = 0.329 Gr}/® . (16)

The average Nusselt number for a plate completely
within the first flow region is
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Nu = —“Ai = 0.99(Gr; Pr)"® (2 4+ Pr-1)7'3, (17)

For air (Pr = 0.72) we have
Nu = 0.776 (Gr, Pr)'”® (18)

which is smaller by 7.5% than the exact Stewartson
solution [6], obtained for the average heat-transfer
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Fig. 2. Comparison of exact heat-transfer
golutions with laminar natural convection
on vertical surfaces with approximate solu-
tion (A = NuX/(erPr)1/4): 1) Squire's ap-
proximate solution [5]; 2) Ostrach's exact
solution for Pr = ¢.01, 0.72, 1.0, 10, 100,
and 1000; 3) exact solution of Sparrow and
Gregg [4] for liquid metals with Pr = 0,03,

0.02, 0.01, 0.008, and 0.003.

coefficient when Pr = 0.72:
Nu = 0.841 (Gr, Pr)"/% . (19)

The Fishenden and Saunders experiment [7] on the
average heat-transfer coefficient in air yield the rela-
tionship

Nu = 0.81(Gr, Pr)*?, 20)
13

which is only 4% lower than our approximate solution.

Thus, for the first flow region the approximate
solution yields satisfactory agreement with the exact
solution and experiment.

For the second region, i.e., the region of creep
flow, where the heat-transfer coefficient is virtually
independent of the longitudinal coordinate, the equa-
tions for the creeping "boundary layer" in our co-
ordinate system can be written in analogy with the
equations for the forward point [8]:
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The concept of "boundary layer" is retained here
in the sense that the effect of the heated wall is extended
to a layer small in comparison with the dimensions of
the plate (see Fig. 1), thus making it possible to
neglect the derivatives with respect to x in Egs. (21)
and (22). Here, as in the first region, we will seek
the approximate solution by resorting to the Karman-
Pohlhausen method.

We assume the following velocity distribution in the
"boundary layer" (within the layer in which the heated
wall exerts an effect):
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v=—u (L] (23)

\

It satisfies the wall boundary condition v = 0 when y = 0.
At the outside edge of the boundary layer we have y = §,
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Fig. 3. Dimensionless temperature profile

within the first flow region (6 = 0/6y), y/6=

= (y/4.25x)(GryPr)!/5: 1) approximation of (10)

with substituion of éfrom solution (12); 1)Ray =

=7.10% 2) 8-10% 3) 2.4-10% 4) 2.8 -10%; 5)
Ray = 2.4 -10° [1].

u =0, du/dx =0, and it follows from the continuity
equation that v = —v; = const, which is also satisfied
by distribution (23).

The temperature distribution in the "boundary layer®”
is expressed in the form of the polynomial
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Integration of Egs. (21) and (22) with respect to the
thickness of the "boundary layer, " with consideration
of (23) and (24), leads to ’

LENPYS (Gr, Pr)™”,
X

(26)
With consideration of (26), from distribution (24)
we find the heat flow at the wall:

A 1/3

g, = 0.0862 - @, (Gr, Pr) 27
X

The local heat-transfer coefficient for the second
region (the creep-flow region) is then expressed by
Nu, = 0.0862(Gr, Pr)'”® . (28)

Equating (15) and (28), we find the value of the
complex (Gry Pr),, separating the two flow regions:

(Gr, Pr), = 2.43-105(2 4 Pr-1y73? (29)
or for air (Pr = 0.72)
(Gr, Pr), — 3.88-10%. (30)

The average Nusselt number for a plate whose
heated surface is turned downward was determined
experimentally in air by Novozhilov [9], who derived
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the following relationship for a 0.91 X 0,91 m in the
region Gr;Pr > 3.88 10

Nu = 0.085 (Gr, Pr)'%, (31)
which differs by only 1.5% from the theoretical solu-
tion of (28). The McAdams [10] generalization of the
experiments on the average heat transfer for Pr > 0.7
yields the following theoretical formula for plates
whose heated sides are turned downward:

Nu = 0.104 (Gr, Pr)'?, (32)

which exceeds the Nu value of solution (28) by 17%.

Such agreement between (28) and the generalization
of the McAdams experiments on the average heat trans-
fer can be treated as completely satisfactory, since
the experimental points, on the average, yield ascatter
about the approximating curve (32) of £10%. Moreover,
the increase in the heat transfer toward the edges of
the plate is not accounted for by formula (28), which
may result in a substantial exaggeration of the co-
efficient in (28) for comparatively small plates (see
formulas (33)).

The average Nusselt number for a plate of length
{ for which (GryPr) > (GrXPr)* is given by

Nu, = 7.132+ Pr ™ 4 0.0862 (Gr, Pr)'* (33"
or for air (Pr = 0.72)
Nu, = 3.88 4- 0.0862 (Gr, Pr)"*. (33M

In many cases it is impossible for the comparison
of the theoretical solutions relative to the experiments
on the average heat transfer to serve as a reliable
guarantee of validity for the physical model on which
the solutions are based. It is therefore of considerable
interest to compare the derived approximate solutions
with the experiments on local heat transfer.

In the light of the inadequate experimental data on
local coefficients, we set up an experiment whose
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Fig. 4. Local heat transfer under conditions

of natural convection in the air near horizontal
plates with their heated surfaces downward. I)
according to (16) for the first region and according
to (28) for the second one; IT) values of (Ray), ac-
cording to (30); 1 and 2) on the plate with [ = 200
and 50 mm; 3) 160 mm [1]; 4) 720 mm [11]; 5)
910 mm [9]; 6) 100 and 200 mm [12] a~region

on of 1/5 law; b—region of 1/3 law).

purpose was to provide the maximum range of Ray
numbers and to establish the values of (Ray), in the
transition zone separating the two characteristic heat-
transfer regions.
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The experiment was carried out in air on two brass
plates which were 50 and 200 mm wide, each exhib-
iting a length of 400 mm and a thickness of 5 mm. The
constancy of the plate-surface temperature was en-
sured by an extremely tight winding of nichrome wire
and the sufficient thickness of the plate. The tempera-
ture field in the boundary layer and the plate-surface
temperature were measured by means of an inter-
ferometer. To achieve the required accuracy in mea-
suring the temperature fields, we positioned the models
lengthwise along the lightbeam of the interferometer.
These specially adopted measures to prevent the effect
of external disturbances at the boundary layer of the
plate proved to be unnecessary, and it developed during
the course of the experiment, since the boundary layer
for a plate whose heated side is turned down was ex-
tremely resistant to external disturbances. The local
heat-transfer coefficients were determined from the
temperature profiles. Since the physical parameters
of the air in the experiments of {1,9,11,12] were taken
for a wall temperature t,,, we also took ty as the
decisive temperature.

The experiments were carried out at heated tempera-
tures ranging from 10 to 70° C, and the local Rayleigh
numbers varied in the limits Ray = 0.7-2.5 - 10,

The experimental results are shown in Figs. 3 and
4. Figure 3 shows a comparison of the dimensionless
temperature profiles (obtained experimentally in the
first flow region) with the profile determined from
{10) on substitution into the latter of the value of &
from (17) for Pr = 0.72. Here we also find the tempera-
ture profile derived in the Weise experiments [1]. As
we can see from Fig. 3, the experimental temperature
profiles are in satisfactory agreement with the approx-
imate solution.

The experimental data of the various authors [1,9,
11,12] on the local transfer of heat in air from a hor-
izontal plate whose heating surface is facing down-
ward are shown in Fig. 4. The range of generalization
for the experimental data is Ray = 0.7-5- 10", Here we
also find the following approximate solutions: (16) for
the first region and (28) for the second heat-transfer
region. The agreement between the approximate solu-
tions and the experiment must be regarded as sat-
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isfactory. The slight overstatement of the experimental
values of oy relative to the solution—as given in [1]
and [11]—can be explained by the strong influence of
radiative heat exchange in thege references.

NOTATION

X and y are the transverse and longitudinal co~
ordinates; 0 is the excess temperature; t is the tem-
perature; ! is the plate width; 6 is the boundary-layer
thickness; P is the excess pressure; p is the density;
uy is the typical velocity; q, is the specific heat flux
on wall; u and v are the longitudinal and transverse
velocities; Ra is the Rayleigh number. Symbols: x
is thelocal value; dashdenotes the mean value; w
denotes the wall; © denotes the undisturbed flow; I
denotes the plate width; * denotes the transition value.
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